Abstract
The Internet of Things (IoT) is an industry-recognized next intelligent life solution that increases the level of comfort, efficiency, and automation for citizens through numerous sensors, smart devices, and cloud stations connected physically. As an important application scenario of IoT, the Internet of Vehicles (IoV) plays an extremely critical role in the intelligent transportation field. In fact, the In-Vehicle Network of smart vehicles that are recognized as the core roles in intelligent transportation is currently the Controller Area Network (CAN). However, the In-Vehicle CAN bus protocol has several vulnerabilities without any encryption, authentication, or integrity checking, which severely threatens the safety of drivers and passengers. Once malicious attackers hack the vehicular gateway and obtain the access right of the CAN, they may control the vehicle based on the vulnerabilities of the CAN bus protocol. Given the severe security risk of CAN, we proposed the CANsec, a practical In-Vehicle CAN security evaluation tool that simulates malicious attacks according to major attack models to evaluate the security risk of the In-Vehicle CAN. We also show a usage case of the CANsec without knowing any information from the vehicle manufacturer.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献