Abstract
Visual simultaneous localization and mapping (VSLAM) is an essential technique used in areas such as robotics and augmented reality for pose estimation and 3D mapping. Research on VSLAM using both monocular and stereo cameras has grown significantly over the last two decades. There is, therefore, a need for emphasis on a comprehensive review of the evolving architecture of such algorithms in the literature. Although VSLAM algorithm pipelines share similar mathematical backbones, their implementations are individualized and the ad hoc nature of the interfacing between different modules of VSLAM pipelines complicates code reuseability and maintenance. This paper presents a software model for core components of VSLAM implementations and interfaces that govern data flow between them while also attempting to preserve the elements that offer performance improvements over the evolution of VSLAM architectures. The framework presented in this paper employs principles from model-driven engineering (MDE), which are used extensively in the development of large and complicated software systems. The presented VSLAM framework will assist researchers in improving the performance of individual modules of VSLAM while not having to spend time on system integration of those modules into VSLAM pipelines.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient Terrain Map Using Planar Regions for Footstep Planning on Humanoid Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13