A Semi-Automated Workflow for LULC Mapping via Sentinel-2 Data Cubes and Spectral Indices

Author:

Chaves Michel E. D.1ORCID,Soares Anderson R.2ORCID,Mataveli Guilherme A. V.1ORCID,Sánchez Alber H.1ORCID,Sanches Ieda D.1ORCID

Affiliation:

1. Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, São Paulo, Brazil

2. Digital Business Department, Cognizant Technology Solutions, São Paulo 04705-000, São Paulo, Brazil

Abstract

Land use and land cover (LULC) mapping initiatives are essential to support decision making related to the implementation of different policies. There is a need for timely and accurate LULC maps. However, building them is challenging. LULC changes affect natural areas and local biodiversity. When they cause landscape fragmentation, the mapping and monitoring of changes are affected. Due to this situation, improving the efforts for LULC mapping and monitoring in fragmented biomes and ecosystems is crucial, and the adequate separability of classes is a key factor in this process. We believe that combining multidimensional Earth observation (EO) data cubes and spectral vegetation indices (VIs) derived from the red edge, near-infrared, and shortwave infrared bands provided by the Sentinel-2/MultiSpectral Instrument (S2/MSI) mission reduces uncertainties in area estimation, leading toward more automated mappings. Here, we present a low-cost semi-automated classification scheme created to identify croplands, pasturelands, natural grasslands, and shrublands from EO data cubes and the Surface Reflectance to Vegetation Indexes (sr2vgi) tool to automate spectral index calculation, with both produced in the scope of the Brazil Data Cube (BDC) project. We used this combination of data and tools to improve LULC mapping in the Brazilian Cerrado biome during the 2018–2019 crop season. The overall accuracy (OA) of our results is 88%, indicating the potential of the proposed approach to provide timely and accurate LULC mapping from the detection of different vegetation patterns in time series.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3