A Simplified One-Parallel-Element Automatic Impedance-Matching Network Applied to Electromagnetic Acoustic Transducers Driving

Author:

Andrade João Pedro T.1,Bazan Pedro Leon F. C.1,Medeiros Vivian S.2,Kubrusly Alan C.1ORCID

Affiliation:

1. Center for Telecommunication Studies, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil

2. Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13566-590, Brazil

Abstract

Ultrasonic waves generated and received by electromagnetic acoustic transducers (EMATs) are advantageous in non-destructive testing, mainly due to the ability to operate without physical contact with the medium under test. Nevertheless, they present a main drawback of less efficiency, which leads to a lower signal-to-noise ratio. To overcome this, the L-network impedance-matching network is often used in order to ensure maximum power transfer to the EMAT from the excitation electronics. There is a wide range of factors that affect an EMAT’s impedance, apart from the transducer itself; namely, the properties of the specimen material, temperature, and frequency. Therefore, to ensure optimal power transfer, the matching network’s configuration needs to be fine-tuned often. Therefore, the automation of the laborious process of manually adjusting the network is of great benefit to the use of EMAT transducers. In this work, a simplified one-parallel-element automatic matching network is proposed and its theoretical optimal value is derived. Next, an automatic matching network was designed and fabricated. Experiments were performed with two different EMATs at several frequencies obtaining good agreement with theoretical predictions. The automatic system was able to determine the best configuration for the one-element matching network and provided up to 5.6 dB gain, similar to a standard manual solution and considerably faster.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

the Carlos Chagas Filho Foundation for Research Support of Rio de Janeiro State (FAPERJ), Brazil

Brazilian National Council for Scientific and Technological Development, CNPq

Publisher

MDPI AG

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3