Wave Propagation and Structural Health Monitoring Application on Parts Fabricated by Additive Manufacturing

Author:

Modir AlirezaORCID,Tansel Ibrahim

Abstract

Additive manufacturing (AM) applications have been steadily increasing in many industry sectors. AM allows creating complex geometries inside of a part to leave some space empty, called infills. Lighter parts are manufactured in a shorter time with less warpage if the strength of the part meets the design requirements. While the benefits of structural health monitoring (SHM) have been proven in different structures, few studies have investigated SHM methods on AM parts. In this study, the relationship between wave propagation and infill density has been studied for the additively manufactured polymer parts. The propagation of surface waves is monitored by using piezoelectric elements. Four rectangular parts are manufactured by using the material extrusion method with 20%, 40%, 60%, and 100% rectilinear infill densities. Four piezoelectric elements were attached on the surface of each beam, one for excitation and three for monitoring the response of the part at equal distances on each part. The results demonstrated that the surface waves diminish faster at parts with lower densities. The received signal in the part with totally solid infills showed about 10 times higher amplitudes compare with the part with 20% infill. The surface response to excitation (SuRE) method was used for sensing the loading on the part. Also, the wave propagation speed was calculated with exciting parts with a pulse signal with a 10-microsecond duration. The wave propagation speed was almost the same for all infill densities.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3