Optimizing Task Offloading for Power Line Inspection in Smart Grid Networks with Edge Computing: A Game Theory Approach

Author:

Lu Xu1,Yuan Sihan2,Nian Zhongyuan3,Mu Chunfang3,Li Xi2

Affiliation:

1. Power Dispatching Control Center of State Grid Inner Mongolia Eastern Power Co., Ltd., Hohhot 010020, China

2. Pan Network Wireless Communication Laboratory, Beijing University of Posts and Telecommunications, Haidian District, Beijing 100876, China

3. Information and Communication Branch of State Grid Inner Mongolia Eastern Power Co., Ltd., Hohhot 010020, China

Abstract

In the power grid, inspection robots enhance operational efficiency and safety by inspecting power lines for information sharing and interaction. Edge computing improves computational efficiency by positioning resources close to the data source, supporting real-time fault detection and line monitoring. However, large data volumes and high latency pose challenges. Existing offloading strategies often neglect task divisibility and priority, resulting in low efficiency and poor system performance. This paper constructs a power grid inspection offloading scenario using Python 3.11.2 to study and improve various offloading strategies. Implementing a game-theory-based distributed computation offloading strategy, simulation analysis reveals issues with high latency and low resource utilization. To address these, an improved game-theory-based strategy is proposed, optimizing task allocation and priority settings. By integrating local and edge computing resources, resource utilization is enhanced, and latency is significantly reduced. Simulations show that the improved strategy lowers communication latency, enhances system performance, and increases resource utilization in the power grid inspection context, offering valuable insights for related research.

Funder

State Grid Corporation of China Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3