Utilizing Multi-Class Classification Methods for Automated Sleep Disorder Prediction

Author:

Dritsas Elias1ORCID,Trigka Maria1ORCID

Affiliation:

1. Industrial Systems Institute (ISI), Athena Research and Innovation Center, 26504 Patras, Greece

Abstract

Even from infancy, a human’s day-life alternates from a period of wakefulness to a period of sleep at night, during the 24-hour cycle. Sleep is a normal process necessary for human physical and mental health. A lack of sleep makes it difficult to control emotions and behaviour, reduces productivity at work, and can even increase stress or depression. In addition, poor sleep affects health; when sleep is insufficient, the chances of developing serious diseases greatly increase. Researchers in sleep medicine have identified an extensive list of sleep disorders, and thus leveraged Artificial Intelligence (AI) to automate their analysis and gain a deeper understanding of sleep patterns and related disorders. In this research, we seek a Machine Learning (ML) solution that will allow for efficient classification of unlabeled instances as being Sleep Apnea, Insomnia or Normal (subjects without a specific sleep disorder) by assessing the performance of two well-established strategies for multi-class classification tasks: the One-Vs-All (OVA) and One-Vs-One (OVO). In the context of the specific strategies, two well-known binary classification models were assumed, Logistic Regression (LR) and Support Vector Machines (SVMs). Both strategies’ validity was verified upon a dataset of diverse information related to the profiles (anthropometric data, sleep metrics, lifestyle and cardiovascular health factors) of potential patients or individuals not exhibiting any specific sleep disorder. Performance evaluation was carried out by comparing the weighted average results in all involved classes that represent these two specific sleep disorders and no-disorder occurrence; accuracy, kappa score, precision, recall, f-measure, and Area Under the ROC curve (AUC) were recorded and compared to identify an effective and robust model and strategy, both class-wise and on average. The experimental evaluation unveiled that after feature selection, 2-degree polynomial SVM under both strategies was the least complex and most efficient, recording an accuracy of 91.44%, a kappa score of 84.97%, precision, recall and f-measure equal to 0.914, and an AUC of 0.927.

Publisher

MDPI AG

Reference63 articles.

1. Solomon, C. (2022). Health Benefits of Sleep: Why Is Getting Enough Rest So Important. Altern. Med., 26–29.

2. (2024, July 04). World Sleep Day. Available online: https://worldsleepday.org/.

3. What is REM sleep?;Blumberg;Curr. Biol.,2020

4. REM sleep behaviour disorder;Dauvilliers;Nat. Rev. Dis. Prim.,2018

5. Sleep is essential to health: An American Academy of Sleep Medicine position statement;Ramar;J. Clin. Sleep Med.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3