Digital Sentinels and Antagonists: The Dual Nature of Chatbots in Cybersecurity

Author:

Szmurlo Hannah1,Akhtar Zahid1ORCID

Affiliation:

1. Department of Network and Computer Security, State University of New York (SUNY) Polytechnic Institute, Utica, NY 13502, USA

Abstract

Advancements in artificial intelligence, machine learning, and natural language processing have culminated in sophisticated technologies such as transformer models, generative AI models, and chatbots. Chatbots are sophisticated software applications created to simulate conversation with human users. Chatbots have surged in popularity owing to their versatility and user-friendly nature, which have made them indispensable across a wide range of tasks. This article explores the dual nature of chatbots in the realm of cybersecurity and highlights their roles as both defensive tools and offensive tools. On the one hand, chatbots enhance organizational cyber defenses by providing real-time threat responses and fortifying existing security measures. On the other hand, adversaries exploit chatbots to perform advanced cyberattacks, since chatbots have lowered the technical barrier to generate phishing, malware, and other cyberthreats. Despite the implementation of censorship systems, malicious actors find ways to bypass these safeguards. Thus, this paper first provides an overview of the historical development of chatbots and large language models (LLMs), including their functionality, applications, and societal effects. Next, we explore the dualistic applications of chatbots in cybersecurity by surveying the most representative works on both attacks involving chatbots and chatbots’ defensive uses. We also present experimental analyses to illustrate and evaluate different offensive applications of chatbots. Finally, open issues and challenges regarding the duality of chatbots are highlighted and potential future research directions are discussed to promote responsible usage and enhance both offensive and defensive cybersecurity strategies.

Publisher

MDPI AG

Reference115 articles.

1. Littman, M.L., Ajunwa, I., Berger, G., Boutilier, C., Currie, M., Doshi-Velez, F., Hadfield, G., Horowitz, M.C., Isbell, C., and Kitano, H. (2021). Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100), Stanford University. 2021 Study Panel Report.

2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017, January 4–9). Attention is all you need. Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA.

3. (2024, May 31). Meta, Multimodal Generative AI systems. Available online: https://ai.meta.com/tools/system-cards/multimodal-generative-ai-systems/.

4. Future progress in artificial intelligence: A poll among experts;Bostrom;AI Matters,2014

5. (2024, May 31). Questionnaire Experts Results: Future Progress in Artificial Intelligence. Available online: https://www.pt-ai.org/polls/experts.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3