Investigating Credit Card Payment Fraud with Detection Methods Using Advanced Machine Learning

Author:

Chang Victor1ORCID,Ali Basit1ORCID,Golightly Lewis2ORCID,Ganatra Meghana Ashok1ORCID,Mohamed Muhidin1ORCID

Affiliation:

1. Department of Operations and Information Management, Aston University, Birmingham B4 7ET, UK

2. Department of Computing and Games, Teesside University, Middlesbrough TS1 3BX, UK

Abstract

In the cybersecurity industry, where legitimate transactions far outnumber fraudulent ones, detecting fraud is of paramount significance. In order to evaluate the accuracy of detecting fraudulent transactions in imbalanced real datasets, this study compares the efficacy of two approaches, random under-sampling and oversampling, using the synthetic minority over-sampling technique (SMOTE). Random under-sampling aims for fairness by excluding examples from the majority class, but this compromises precision in favor of recall. To strike a balance and ensure statistical significance, SMOTE was used instead to produce artificial examples of the minority class. Based on the data obtained, it is clear that random under-sampling achieves high recall (92.86%) at the expense of low precision, whereas SMOTE achieves a higher accuracy (86.75%) and a more even F1 score (73.47%) at the expense of a slightly lower recall. As true fraudulent transactions require at least two methods for verification, we investigated different machine learning methods and made suitable balances between accuracy, F1 score, and recall. Our comparison sheds light on the subtleties and ramifications of each approach, allowing professionals in the field of cybersecurity to better choose the approach that best meets the needs of their own firm. This research highlights the need to resolve class imbalances for effective fraud detection in cybersecurity, as well as the need for constant monitoring and the investigation of new approaches to increase applicability.

Funder

VC Research

Leverhulme Trust

International Science Partnerships Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3