Joint Classification of Hyperspectral and LiDAR Data Based on Adaptive Gating Mechanism and Learnable Transformer

Author:

Wang Minhui1,Sun Yaxiu1,Xiang Jianhong1,Sun Rui1,Zhong Yu2

Affiliation:

1. Key Laboratory of Advanced Ship Communication and Information Technology, Harbin Engineering University, Harbin 150001, China

2. Agile and Intelligent Computing Key Laboratory, Chengdu 610000, China

Abstract

Utilizing multi-modal data, as opposed to only hyperspectral image (HSI), enhances target identification accuracy in remote sensing. Transformers are applied to multi-modal data classification for their long-range dependency but often overlook intrinsic image structure by directly flattening image blocks into vectors. Moreover, as the encoder deepens, unprofitable information negatively impacts classification performance. Therefore, this paper proposes a learnable transformer with an adaptive gating mechanism (AGMLT). Firstly, a spectral–spatial adaptive gating mechanism (SSAGM) is designed to comprehensively extract the local information from images. It mainly contains point depthwise attention (PDWA) and asymmetric depthwise attention (ADWA). The former is for extracting spectral information of HSI, and the latter is for extracting spatial information of HSI and elevation information of LiDAR-derived rasterized digital surface models (LiDAR-DSM). By omitting linear layers, local continuity is maintained. Then, the layer Scale and learnable transition matrix are introduced to the original transformer encoder and self-attention to form the learnable transformer (L-Former). It improves data dynamics and prevents performance degradation as the encoder deepens. Subsequently, learnable cross-attention (LC-Attention) with the learnable transfer matrix is designed to augment the fusion of multi-modal data by enriching feature information. Finally, poly loss, known for its adaptability with multi-modal data, is employed in training the model. Experiments in the paper are conducted on four famous multi-modal datasets: Trento (TR), MUUFL (MU), Augsburg (AU), and Houston2013 (HU). The results show that AGMLT achieves optimal performance over some existing models.

Funder

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

National Key Laboratory of Communication Anti Jamming Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3