Affiliation:
1. Istituto Nazionale di Geofisica e Vulcanologia (INGV), 00143 Rome, Italy
2. Central Italy Electromagnetic Network (CIEN), 63100 Fermo, Italy
3. Department of Physics of the Earth and Astrophysics, Faculty of Physics, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
Abstract
On 4 March 2021, a devastating M8.1 earthquake struck the Kermadec Islands of New Zealand. Given the tremendous energy released during the event, we sought to investigate the event’s potential impact on the ionosphere and the inner Van Allen Belt using data from the high-energy electron detectors on board the NOAA-18 satellite. The survey was also extended to the strongest shallow M6.5+ earthquakes occurring between 150° and 190° in longitude, and between −5° and −35° in latitude over the previous ten years. In nearly all cases, evident electron fluxes entering the loss cone were observed. To explore the possibility of a connection between ionospheric signals and tectonic events in this intensely active region, we analyzed electron losses from the inner Van Allen Belt, taking into account latitude, longitude, day/night times, and proximity to the South Atlantic Anomaly. Compared to previous studies, here only the most significant loss phenomena persistent in the ionosphere were considered. Particular interest was reserved for the intense electron loss events that had a duration spanning from a few to several minutes and occurred several hours before and after strong seismic events. Thereafter, time series of electron counting rates and strong Southern Pacific earthquakes were transformed into binary series, and the series multiplication was investigated. The results suggest four peaks of association, including a first couple between electron perturbations detected for ascending semi-orbits and seismic events and a second one between electron perturbations detected in the southern ionosphere and seismic events. They both anticipated the occurrence of earthquakes, occurring around 4 h before them. Other couples were observed between electron perturbations detected for descending semi-orbits and seismic events and between electron perturbations detected in the northern ionosphere and seismic events. They both occurred around 3 h after the occurrence of earthquakes. The case of perturbations anticipating seismic events has the intriguing properties of sustaining the hypothesis that a physical interaction occurred around 6 h before seismic events as in the West Pacific case. A physical model of electrons detected far several thousands of km from the earthquake epicenters was also presented. However, a simulation of random seismic events suggested that the null hypothesis cannot be fully rejected for these associations, prompting many more analyses and case studies.
Funder
Limadou Science + Project
Pianeta Dinamico (Working Earth) Project
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献