Extraction of Forest Road Information from CubeSat Imagery Using Convolutional Neural Networks

Author:

Winiwarter Lukas123ORCID,Coops Nicholas C.1ORCID,Bastyr Alex1,Roussel Jean-Romain4,Zhao Daisy Q. R.1,Lamb Clayton T.5,Ford Adam T.5

Affiliation:

1. Integrated Remote Sensing Studio, Faculty of Forestry, University of British Columbia, Vancouver Campus, Vancouver, BC V6T 1Z4, Canada

2. Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria

3. Unit of Geometry and Surveying, Faculty of Engineering Sciences, University of Innsbruck, 6020 Innsbruck, Austria

4. Centre de Recherche sur les Matériaux Renouvelables, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC G1V 0A6, Canada

5. Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada

Abstract

Forest roads provide access to remote wooded areas, serving as key transportation routes and contributing to human impact on the local environment. However, large animals, such as bears (Ursus sp.), moose (Alces alces), and caribou (Rangifer tarandus caribou), are affected by their presence. Many publicly available road layers are outdated or inaccurate, making the assessment of landscape objectives difficult. To address these gaps in road location data, we employ CubeSat Imagery from the Planet constellation to predict the occurrence of road probabilities using a SegNet Convolutional Neural Network. Our research examines the potential of a pre-trained neural network (VGG-16 trained on ImageNet) transferred to the remote sensing domain. The classification is refined through post-processing, which considers spatial misalignment and road width variability. On a withheld test subset, we achieve an overall accuracy of 99.1%, a precision of 76.1%, and a recall of 91.2% (F1-Score: 83.0%) after considering these effects. We investigate the performance with respect to canopy coverage using a spectral greenness index, topography (slope and aspect), and land cover metrics. Results found that predictions are best in flat areas, with low to medium canopy coverage, and in the forest (coniferous and deciduous) land cover classes. The results are vectorized into a drivable road network, allowing for vector-based routing and coverage analyses. Our approach digitized 14,359 km of roads in a 23,500 km2 area in British Columbia, Canada. Compared to a governmental dataset, our method missed 10,869 km but detected an additional 5774 km of roads connected to the network. Finally, we use the detected road locations to investigate road age by accessing an archive of Landsat data, allowing spatiotemporal modelling of road access to remote areas. This provides important information on the development of the road network over time and the calculation of impacts, such as cumulative effects on wildlife.

Funder

Environment and Climate Change Canada

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3