LinkNet-Spectral-Spatial-Temporal Transformer Based on Few-Shot Learning for Mangrove Loss Detection with Small Dataset

Author:

Panuntun Ilham Adi1ORCID,Jamaluddin Ilham2ORCID,Chen Ying-Nong12ORCID,Lai Shiou-Nu3,Fan Kuo-Chin2

Affiliation:

1. Center for Space and Remote-Sensing Research, National Central University, No. 300, Jhongda Rd., Jhongli Dist., Taoyuan City 32001, Taiwan

2. Department of Computer Science and Information Engineering, National Central University, No. 300, Jhongda Rd., Jhongli Dist., Taoyuan City 32001, Taiwan

3. Department of Business Administration, Hsing Wu University, No. 101, Sec.1, Fenliao Rd., LinKou Dist., New Taipei City 244012, Taiwan

Abstract

Mangroves grow in intertidal zones in tropical and subtropical regions, offering numerous advantages to humans and ecosystems. Mangrove monitoring is one of the important tasks to understand the current status of mangrove forests regarding their loss issues, including deforestation and degradation. Currently, satellite imagery is widely employed to monitor mangrove ecosystems. Sentinel-2 is an optical satellite imagery whose data are available for free, and which provides satellite imagery at a 5-day temporal resolution. Analyzing satellite images before and after loss can enhance our ability to detect mangrove loss. This paper introduces a LSST-Former model that considers the situation before and after mangrove loss to categorize non-mangrove areas, intact mangroves, and mangrove loss categories using Sentinel-2 images for a limited number of labels. The LSST-Former model was developed by integrating a fully convolutional network (FCN) and a transformer base with few-shot learning algorithms to extract information from spectral-spatial-temporal Sentinel-2 images. The attention mechanism in the transformer algorithm may effectively mitigate the issue of limited labeled samples and enhance the accuracy of learning correlations between samples, resulting in more successful classification. The experimental findings demonstrate that the LSST-Former model achieves an overall accuracy of 99.59% and an Intersection-over-Union (IoU) score of 98.84% for detecting mangrove loss, and the validation of universal applicability achieves an overall accuracy of more than 92% and a kappa accuracy of more than 89%. LSST-Former demonstrates superior performance compared to state-of-the-art deep-learning models such as random forest, Support Vector Machine, U-Net, LinkNet, Vision Transformer, SpectralFormer, MDPrePost-Net, and SST-Former, as evidenced by the experimental results and accuracy metrics.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applicability of pre-trained CNNs in temperate deforestation detection;European Journal of Remote Sensing;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3