Identification of the Debris Flow Process Types within Catchments of Beijing Mountainous Area

Author:

Wang Nan,Cheng Weiming,Zhao MinORCID,Liu Qiangyi,Wang Jing

Abstract

The distinguishable sediment concentration, density, and transport mechanisms characterize the different magnitudes of destruction due to debris flow process (DFP). Identifying the dominating DFP type within a catchment is of paramount importance in determining the efficient delineation and mitigation strategies. However, few studies have focused on the identification of the DFP types (including water-flood, debris-flood, and debris-flow) based on machine learning methods. Therefore, while taking Beijing as the study area, this paper aims to establish an integrated framework for the identification of the DFP types, which consists of an indicator calculation system, imbalance dataset learning (borderline-Synthetic Minority Oversampling Technique (borderline-SMOTE)), and classification model selection (Random Forest (RF), AdaBoost, Gradient Boosting (GBDT)). The classification accuracies of the models were compared and the significance of parameters was then assessed. The results indicate that Random Forest has the highest accuracy (0.752), together with the highest area under the receiver operating characteristic curve (AUROC = 0.73), and the lowest root-mean-square error (RMSE = 0.544). This study confirms that the catchment shape and the relief gradient features benefit the identification of the DFP types. Whereby, the roughness index (RI) and the Relief ratio (Rr) can be used to effectively describe the DFP types. The spatial distribution of the DFP types is analyzed in this paper to provide a reference for diverse practical measures, which are suitable for the particularity of highly destructive catchments.

Funder

China Institute of Water Resources and Hydropower Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3