Thermal Stability of Type II Modifications by IR Femtosecond Laser in Silica-based Glasses

Author:

Wei Shu-En,Wang Yitao,Yao Heng,Cavillon MaximeORCID,Poumellec Bertrand,Peng Gang-Ding,Lancry Matthieu

Abstract

Femtosecond (fs) laser written fiber Bragg gratings (FBGs) are excellent candidates for ultra-high temperature (>800 °C) monitoring. More specifically, Type II modifications in silicate glass fibers, characterized by the formation of self-organized birefringent nanostructures, are known to exhibit remarkable thermal stability around 1000 °C for several hours. However, to date there is no clear understanding on how both laser writing parameters and glass composition impact the overall thermal stability of these fiber-based sensors. In this context, this work investigates thermal stability of Type II modifications in various conventional glass systems (including pure silica glasses with various Cl and OH contents, GeO2-SiO2 binary glasses, TiO2- and B2O3-doped commercial glasses) and with varying laser parameters (writing speed, pulse energy). In order to monitor thermal stability, isochronal annealing experiments (Δt⁓ 30 min, ΔT⁓ 50 °C) up to 1400 °C were performed on the irradiated samples, along with quantitative retardance measurements. Among the findings to highlight, it was established that ppm levels of Cl and OH can drastically reduce thermal stability (by about 200 °C in this study). Moreover, GeO2 doping up to 17 mole% only has a limited impact on thermal stability. Finally, the relationships between glass viscosity, dopants/impurities, and thermal stability, are discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3