Monitoring of Carbon Stocks in Pastures in the Savannas of Brazil through Ecosystem Modeling on a Regional Scale

Author:

Santos Claudinei Oliveira dos,Pinto Alexandre de SiqueiraORCID,Silva Janete Rego da,Parente Leandro Leal,Mesquita Vinícius Vieira,Santos Maiara Pedral dos,Ferreira Laerte Guimaraes

Abstract

In 2020, Brazil was the seventh largest emitter of GHG (greenhouse gases), releasing ~2.16 GtCO2e (gigatons of carbon dioxide equivalent) into the atmosphere. Activities related to land use contributed approximately 73% of national emissions in that year. Considering that pastures represent the primary land use in the country, occupying approximately 20% of the territory, the mapping and monitoring of C stocks in these areas is essential to determine their contribution to national emissions. In this study, based on the integrated use of the CENTURY model, georeferenced databases, and the R environment, we mapped and analyzed, for the first time, the C stocks dynamics associated with the pasture areas of the Cerrado biome between 2000 and 2019. The average C stocks in the soil (0–20 cm) and in the aboveground biomass estimated by modeling were ~31 MgC·ha−1 and ~4 MgC·ha−1, respectively, values close to those observed in the literature for the region. Furthermore, the model results corresponded to the edaphic patterns of the region, with the highest average estimated C stocks in Cambisols (~34 MgC·ha−1) and the lowest in Neosols (~29 MgC·ha−1). The temporal dynamics of soil C stocks in these areas are directly related to the age of the pastures. In fact, stocks tend to be reduced in recently converted areas and stabilized in areas that have been under this land use for a longer time (≥30 years). As a result, a loss of ~103 MtC (millions of tons of carbon) was estimated in the Cerrado pasture soils in twenty years. The mapping and monitoring of C stocks in this land use type through approaches such as the one presented in this study is essential to support the Brazilian government’s efforts to mitigate C emissions.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference47 articles.

1. The Challenge to Keep Global Warming below 2 °C;Peters;Nat. Clim. Chang.,2013

2. Balancing the Global Carbon Budget;Houghton;Annu. Rev. Earth Planet. Sci.,2007

3. Global Carbon Budget 2020;Friedlingstein;Earth Syst. Sci. Data,2020

4. Albuquerque, I., Alencar, A., and Angelo, C. (2022, November 06). Analysis of Brazilian greenhouse gas emissions and their implications for Brazil’s climate goals 1970–2019. Available online: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-e-suas-implicacoes-para-as-metas-climaticas-do-brasil-1970-2020.

5. (2022, February 10). SEEG Greenhouse Gas Emission Estimation System. Available online: https://plataforma.seeg.eco.br/total_emission.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3