Multilayer Perceptron and Their Comparison with Two Nature-Inspired Hybrid Techniques of Biogeography-Based Optimization (BBO) and Backtracking Search Algorithm (BSA) for Assessment of Landslide Susceptibility

Author:

Moayedi Hossein,Canatalay Peren Jerfi,Ahmadi Dehrashid AtefehORCID,Cifci Mehmet AkifORCID,Salari Marjan,Le Binh Nguyen

Abstract

Regarding evaluating disaster risks in Iran’s West Kurdistan area, the multi-layer perceptron (MLP) neural network was upgraded with two novel techniques: backtracking search algorithm (BSA) and biogeography-based optimization (BBO). Utilizing 16 landslide conditioning elements such as elevation (aspect), plan (curve), profile (curvature), geology, NDVI (land use), slope (degree), stream power index (SPI), topographic wetness index (TWI), rainfall, and sediment transport index (STI), and 504 landslides as target variables, a large geographic database is constructed. Applying the techniques mentioned above to the synthesis of the MLP results in the suggested BBO-MLP and BSA-MLP ensembles. As accuracy standards, we benefit from mean absolute error, mean square error, and area under the receiving operating characteristic curve to assess the utilized models, we have also designed a scoring system. The MLP’s accuracy increases thanks to the application of the BBO and BSA algorithms. Comparing the BBO with the BSA, we find that the former achieves higher average MLP optimization ranks (20, 15, and 14). A further finding showed that the BBO is superior to the BSA at maximizing the MLP.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3