Water Balance Uncertainty of a Hydrologic Model to Lengthy Drought and Storm Events in Managed Forest Catchments, Eastern Australia

Author:

Jamshidi Reza,Dragovich Deirdre

Abstract

Interest has grown in applying hydrologic models in managed catchments despite uncertainties around model inputs and empirical relationships to simulate complex geo-hydrological processes of streamflow and sediment variations. Unquantified interactions between geophysical, climate and management indices can also increase simulation uncertainties. Calibration of model outputs against observed values allows identification of the most influential variables and their optimised ranges by which model performance can be enhanced. A rainfall-runoff Soil and Water Assessment Tool (SWAT) model was utilised for four catchments in northern New South Wales, Australia to simulate time series of streamflow across varying rainfall regimes, from dry seasons from 2002 towards rainy 2009. Parameters causing a substantial change on model streamflow outputs were first identified using a sensitivity analysis which indicated that hydrologic factors governing the sources of water supply were critical parameters. These sensitive variables were substantially derived from groundwater modules, basic flow in the main channel, and management practices. Statistical tests of between-catchment differences showed that model simulations performed better in a catchment where the sole rain gauge was installed, while also having the narrowest variations in simulated values (r-index = 0.02). In contrast, the highest uncertainty of model simulations was found in the furthest catchment from the rain gauge where there was not a satisfactory agreement with observed data. Yearly differences between 2002 and 2009 indicated an overestimation of streamflow during low flow periods. However, the calibration process performed well in most peak flows where estimations followed the respective observed values. Long-term dry periods between 2002 and 2007 resulted in an overestimated baseflow by predicting an unrealistic recharge infiltrating aquifers.

Funder

University of Sydney

Forestry Corporation of NSW

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3