Establishment of a Monitoring Model for the Cotton Leaf Area Index Based on the Canopy Reflectance Spectrum

Author:

Fan Xianglong,Lv Xin,Gao PanORCID,Zhang LifuORCID,Zhang ZeORCID,Zhang Qiang,Ma Yiru,Yi Xiang,Yin Caixia,Ma Lulu

Abstract

Cotton is the main economic crop in China and is important owing to its use as an industrial raw material and a cash crop. This experiment was conducted in the main cotton-producing area of Xinjiang, China. A hyperspectrometer was used to monitor the canopy spectral reflectance of cotton at different stages of growth. The results showed that the leaf area index (LAI) increased with the increase in the amount of nitrogen fertilizer added during the early full boll stage and decreased with the increase in nitrogen fertilization in the full and late boll stages. Insufficient or excessive fertilization led to a decrease in the LAI. The visible light band indicated that the canopy spectral reflectance decreased, and the amount of fertilizer increased in all the growth stages. The near-infrared band revealed that the canopy spectral reflectance increased with the amount of nitrogen applied during the bud stage, early boll stage, and the most vigorous period of boll growth. During the flowering period, the spectral reflectance followed the order N3 > N4 > N2 > N1 > N0. During the entire growth period of cotton, the values of the cotton LAI predicted using the ratio vegetation index (RVI) model were found to best fit the measured values. The LAI monitoring models of cotton in each growth stage were different. The TVI model is the best in the bud and early boll stages. The NDVI model is the best in the flowering stage, and the DVI model is the best in the full boll stage. This study provides a basis to accurately monitor the LAI in each growth period of cotton.

Funder

Innovative Team Project in the Key Fields of Xinjiang Production and Construction Corps

International Cooperation Project of Xinjiang Production and Construction Corps

General Funded Projects of China Postdoctoral Science Foundation

Innovation Development Project of Shihezi University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3