Insights into the Effects of Study Area Size and Soil Sampling Density in the Prediction of Soil Organic Carbon by Vis-NIR Diffuse Reflectance Spectroscopy in Two Forest Areas

Author:

Conforti MassimoORCID,Buttafuoco GabrieleORCID

Abstract

Sustainable forest land management requires measuring and monitoring soil organic carbon. Visible and near-infrared diffuse reflectance spectroscopy (Vis-NIR, 350–2500 nm), although it has become an important method for predicting soil organic carbon (SOC), requires further studies and methods of analysis to realize its full potential. This study aimed to determine if the size of the study area and soil sampling density may affect the performance of Vis-NIR diffuse reflectance spectroscopy in the prediction of soil organic carbon. Two forest sites in the Calabria region (southern Italy), which differ in terms of area and soil sampling density, were used. The first one was Bonis catchment area (139 ha) with a cover consisting mainly of Calabrian pine, while the second was Mongiana forest area (33.2 ha) within the “Marchesale” Biogenetic Nature Reserve, which is covered by beech. The two study areas are relatively homogeneous regarding parent material and soil type, while they have very different soil sampling density. In particular, Bonis catchment has a lower sampling density (135 samples out of 139 ha) than Mongiana area (231 samples out of 33.2 ha). Three multivariate calibration methods (principal component regression (PCR), partial least square regression (PLSR), and support vector machine regression (SVMR)) were combined with different pretreatment techniques of diffuse reflectance spectra (absorbance, ABS, standard normal variate, SNV, and Savitzky–Golay filtering with first derivative (SG 1st D). All soil samples (0–20 cm) were analyzed in the laboratory for SOC concentration and for measurements of diffuse reflectance spectra in the Vis-NIR region. The set of samples from each study area was randomly divided into a calibration set (70%) and a validation set (30%). The assessment of the goodness for the different calibration models and the following SOC predictions using the validation sets was based on three parameters: the coefficient of determination (R2), the root mean square error (RMSE), and the interquartile range (RPIQ). The results showed that for the two study areas, different levels of goodness of the prediction models depended both on the type of pretreatment and the multivariate method used. Overall, the prediction models obtained with PLSR and SVMR performed better than those of PCR. The best performance was obtained with the SVMR method combined with ABS + SNV + SG 1st D pretreatment (R2 ≥ 0.77 and RPIQ > 2.30). However, there is no result that can absolutely provide definitive indications of either the effects of the study area size and soil sampling density in the prediction of SOC by vis-NIR spectroscopy, but this study fostered the need for future investigations in areas and datasets of different sizes from those in this study and including also different soil landscapes.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference88 articles.

1. European Commission (2020). EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives, European Commission.

2. European Commission (2021). Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change, European Commission.

3. European Commission (2019). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal, COM(2019) 640 Final, European Commission.

4. European Commission (2021). New EU Forest Strategy for 2030, European Commission.

5. Lorenz, K., and Lal, R. (2010). Carbon Sequestration in Forest Ecosystems, Springer. [1st ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3