Effects of UVA on Flavonol Accumulation in Ginkgo biloba

Author:

Zhao Qun1ORCID,Wang Zheng1,Wang Gaiping1,Cao Fuliang1ORCID,Yang Xiaoming1ORCID,Zhao Huiqin1,Zhai Jinting2

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China

2. Yancheng Forest Farm, Yancheng 224057, China

Abstract

Ginkgo is an economic tree species with high medicinal value, and flavonols are its main medicinal components. This research was conducted to investigate the molecular mechanism underlying the influence of Ultraviolet A (UVA) treatment on the synthesis of ginkgo flavonols with the aim of increasing their content. Ginkgo full-sib hybrid offspring were used as test materials. The phenylalanine ammonialyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) enzyme activities, as well as flavonol contents, were measured under the same intensity of white light (300 μmol·m−2·s−1) with the addition of 20, 40, and 60 μmol·m−2·s−1 UVA separately after 20 days of treatment. The control check (CK) and treatment with the highest flavonol content were chosen for transcriptome sequencing analysis. The results showed that the PAL, C4H, and 4CL enzyme activities, as well as the flavonol and totalflavonol glycoside contents, of ginkgo hybrid progeny differed significantly under different UVA treatments. They showed a tendency to increase and then decrease, reaching a maximum value under UVA-4 (40 μmol·m−2·s−1 ultraviolet UVA light intensity) treatment. Ribonucleic acid (RNA) sequencing revealed the presence of 4165 genes with differential expression, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolic pathways commonly enriched across all four comparison groups included ‘phenylpropanoid biosynthesis’, while the pathways commonly enriched in green-leaf ginkgo UVA-4 treatment (TL), yellow-leaf ginkgo mutant CK treatment (CKY), and green-leaf ginkgo CK treatment (CKL) were related to ‘flavonoid biosynthesis’. Treatment with UVA light led to the increased expression of PAL and 4CL enzymes in the phenylpropanoid biosynthesis pathway, as well as increased expression of chalcone synthase (CHS), Flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) enzymes in the flavonoid biosynthesis pathway, thereby promoting the synthesis of ginkgo flavonols. In summary, the use of 40 μmol·m−2·s−1 UVA treatment for 20 days significantly increased the flavonol content and the expression of related enzyme genes in ginkgo hybrid offspring, enhancing ginkgo flavonoids and increasing the medicinal value of ginkgo.

Funder

Xiaoming Yang

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Ecology in Forests;Forests;2024-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3