Restoration Strategies in the Heidaigou Open-Pit Mine Dump Based on Water Sources and Plant Water Utilization

Author:

Wang Jing1,Li Long12,Zhang Liang1,Li Qiang3,Liu Kun3

Affiliation:

1. College of Desert Management, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Key Laboratory of Desert Ecosystem Protection and Restoration, State Forestry Administration, Hohhot 010010, China

3. Ordos Forestry and Grassland Development Center, Ordos 017010, China

Abstract

In this study, three typical plants capable of restoring in the Heidaigou open-pit mine dump, namely, Pinus sylvestris var. mongolica, Caragana korshinskii, and Medicago sativa, were taken as the research objects. The δ2H and δ18O values of atmospheric precipitation, soil water, stem water, and leaf water were measured using the stable isotope technique, and the distribution characteristics of the δ2H and δ18O values of different water sources were identified. The IsoSource model (version1.3.1) was used to calculate the contribution rate of different water sources to the plants, and the differences and dynamic changes in the water sources for P. sylvestris var. mongolica, C. korshinskii, and M. sativa during the rainy season were examined. Results showed that the water source of the three plants was found to be mainly soil water, and the utilization of each potential water source varied in different periods of the rainy season. In June, when SWC was sufficient, P. sylvestris var. mongolica and M. sativa primarily absorbed and utilized shallow and middle soil water, with relative utilization ratios of 55.5% and 59%, respectively, while C. korshinskii has a more balanced utilization ratio of soil water in each layer, with shallow soil water utilization at 33.7%, middle soil water at 34.2%, and deep soil water at 32.2%. In August, when SWC decreased, P. sylvestris var. mongolica, C. korshinskii, and M. sativa were all transferred to deep soil water, with utilization ratios of 75.8%, 78.8%, and 71.1%, respectively. The values showed that these three typical plants are capable of restoring can respond to external water changes through the plastic transformation of water absorption sources. Among them, C. korshinskii can flexibly use soil water in each layer, has stronger survival competitiveness in drought, and can better adapt to the fragile ecological environment of a mining dump.

Funder

Project of Integration and Demonstration of Synergistic Rehabilitation Technology of Nutrient Soil Layer Remodelling and Vegetation Construction in Ordos Open Pit Discharge Site

the Project of Three-dimensional Configuration of Vegetation in Discharge Sites

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3