Impacts of the Integrated Management of Invasive Weeds and Litter on Slope Hydrology in Eucalyptus Plantations in Central Yunnan, Southwest China

Author:

Yu Fuke1,Yan Shilin1,Huang Xinhui2,Jin Zhiwei3,Yan Yi3,Li Ziguang3,Yang Weixiong3,Yin Jianhua3,Zhang Guosheng1ORCID,Chen Qibo2

Affiliation:

1. School of Ecology and Environment, Yunnan University, Kunming 650091, China

2. College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China

3. Kunming Haikou State Forest Farm, Kunming 650114, China

Abstract

Background: The hydrological effects of invasive plant control in forestland have not been well studied in the past, and numerous scientific mysteries remain unsolved. The long-term suspension of the unsolved issues will unavoidably influence the sound growth and sustainable management of forest ecosystems. This study investigates the hydrological effects of controlling invasive weeds in forestland. The research aims to understand the impact of invasive weed control on soil and water loss. Methods: Conducted in Eucalyptus benthamii Maiden & Cambage plantations in Central Yunnan, SW China, which are invaded by alien weed Ageratina adenophora (Spreng.) R. M. King & H. Rob., four surface cover treatments were applied to study runoff and sediment yielding properties. The four surface cover treatments were weed harvesting and litter elimination (WH&LE), weed harvesting and litter retention (WH&LR), litter burning and weed renewal (LB&WR), and weed retention and litter retention (WR&LR). Essentially, WH&LE and LB&WR served as integrated management approaches for invasive weeds and litter, WH&LR was an independent weed control measure, and WR&LR served as a research control. Results: Runoff was significantly higher in the LB&WR plots (3.03 mm) compared to the WR&LR plots (1.48 mm) (p < 0.05). The WH&LE plots had higher runoff (2.39 mm) than the WR&LR plots (not statistically significant), while the WH&LR plots had less runoff (1.08 mm) than the WR&LR plots (not significant). Sediment yield was lower in the WH&LR plots (0.50 t/km2) than in the WR&LR plots (0.52 t/km2) (not significant), but significantly higher in the WH&LE plots (2.10 t/km2) and LB&WR plots (1.57 t/km2) than in the WR&LR plots (p < 0.05). Conclusions: Managing invasive weeds independently reduces the risk of soil and water loss, but combined management with litter can exacerbate the issue. Invasive weed control and litter management should be performed separately in slope plantations. This study provides a scientific basis for soil and water conservation, restoration and rehabilitation of plantation ecosystems.

Funder

National Natural Science Foundation of China

Special Research Project of Forestry Public Welfare Industry of the State Forestry Administration of China

Science and Technology Plan Project of Yunnan, China

First-Class Discipline Construction Project of Yunnan, China

“Double First-Class” Construction Project of Yunnan University, China

Publisher

MDPI AG

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3