Possibilities of Using Neuro-Fuzzy Models for Post-Processing of Hydrological Forecasts

Author:

Kozel Tomas,Vlasak Tomas,Janal PetrORCID

Abstract

When issuing hydrological forecasts and warnings for individual profiles, the aim is to achieve the best possible results. Hydrological forecasts themselves are burdened by an error (uncertainty) at the inputs (precipitation forecast) as well as on the side of the hydrological model used. The aim of the method described in this article is to reduce the error of the hydrological model using post-processing the model results. Models based on neuro-fuzzy models were selected for the post-processing itself. The whole method was tested on 12 profiles in the Czech Republic. The catchment size of the individual profiles ranged from 90 to 4500 km2 and the profiles varied in their character, both in terms of elevation as well as land cover. After finding the suitable model architecture and introducing supporting algorithms, there was an improvement in the results for the individual profiles for selected criteria by on average 5–60% (relative culmination error, mean square error) compared to the results of re-simulation of the hydrological model. The results of the application show that the method was able to improve the accuracy of hydrological forecasts and thus could contribute to better management of flood situations.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3