Study on Data Preprocessing for Machine Learning Based on Semiconductor Manufacturing Processes

Author:

Park Ha-Je1,Koo Yun-Su2,Yang Hee-Yeong1,Han Young-Shin3ORCID,Nam Choon-Sung1ORCID

Affiliation:

1. Department of Software Convergence Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

2. Department of Mechatronics Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

3. Frontier College, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

Abstract

Various data types generated in the semiconductor manufacturing process can be used to increase product yield and reduce manufacturing costs. On the other hand, the data generated during the process are collected from various sensors, resulting in diverse units and an imbalanced dataset with a bias towards the majority class. This study evaluated analysis and preprocessing methods for predicting good and defective products using machine learning to increase yield and reduce costs in semiconductor manufacturing processes. The SECOM dataset is used to achieve this, and preprocessing steps are performed, such as missing value handling, dimensionality reduction, resampling to address class imbalances, and scaling. Finally, six machine learning models were evaluated and compared using the geometric mean (GM) and other metrics to assess the combinations of preprocessing methods on imbalanced data. Unlike previous studies, this research proposes methods to reduce the number of features used in machine learning to shorten the training and prediction times. Furthermore, this study prevents data leakage during preprocessing by separating the training and test datasets before analysis and preprocessing. The results showed that applying oversampling methods, excluding KM SMOTE, achieves a more balanced class classification. The combination of SVM, ADASYN, and MaxAbs scaling showed the best performance with an accuracy and GM of 85.14% and 72.95%, respectively, outperforming all other combinations.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3