Validating Dynamically Downscaled Climate Projections for Mountainous Watersheds Using Historical Runoff Data Coupled with the Distributed Hydrologic Soil Vegetation Model (DHSVM)

Author:

Hasan Mohammad M.,Strong CourtenayORCID,Kochanski Adam K.ORCID,Burian Steven J.,Barber Michael E.

Abstract

The performance of dynamically downscaled climate fields with respect to observed historical stream runoff has been assessed at basin scale using a physically distributed hydrologic model (DHSVM). The dynamically downscaled climate fields were generated by running the Weather Research & Forecasting (WRF) model at 4-km horizontal resolution with boundary conditions derived from the Climate Forecast System Reanalysis. Six hydrologic models were developed using DHSVM for six mountainous tributary watersheds of the Jordan River basin at hourly time steps and 30-m spatial resolution. The size of the watersheds varies from 19 km2 to 130 km2. The models were calibrated for a 6-year period from water year (WY) 1999–2004, using the observed meteorological data from the nearby Snow Telemetry (SNOTEL) sites of the Natural Resources Conservation Services (NRCS). Calibration results showed a very good fit between simulated and observed streamflow with an average Nash-Sutcliffe Efficiency (NSE) greater than 0.77, and good to very good fits in terms of other statistical parameters like percent bias (PBIAS) and coefficient of determination (R2). A 9-year period (WY 2001–2009) was selected as the historical baseline, and stream discharges for this period were simulated using dynamically downscaled climate fields as input to the calibrated hydrologic models. Historical baseline results showed a satisfactory fit of simulated and observed streamflow with an average NSE greater than 0.45 and a coefficient of determination above 0.50. Using volumetric analysis, it has been found that the total volume of water simulated using downscaled climate projections for the entire historical baseline period for all six watersheds is 4% less than the observed amount representing a very good estimation in terms of percent error volume (PEV). However, in the case of individual watersheds, analysis of total annual water volumes showed that estimated total annual water volumes were higher than the observed for Big Cottonwood, City Creek, Millcreek and lower than the observed total annual volume of water for Little Cottonwood, Red Butte Creek, and Parleys Littledell, demonstrating similar characteristics obtained from the calibration results. Seasonal analysis showed that the models can capture the flow volume observed for Big Cottonwood, City Creek and Red Butte Creek during the peak season, and the models can capture the flow volume observed for all the watershed satisfactorily except Big Cottonwood during the dry season. Study results indicated that the dynamically downscaled climate projections used in this study performed satisfactorily in terms of stream runoff, total flow volume, and seasonal flow analyses based on different statistical tests, and can satisfactorily capture flow patterns and flow volume for most of the watersheds considering the uncertainties associated with the study.

Funder

U.S. Environmental Protection Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3