Forest Management under Climate Change: A Decision Analysis of Thinning Interventions for Water Services and Biomass in a Norway Spruce Stand in South Germany

Author:

Rimal Simant,Djahangard MarcORCID,Yousefpour RasoulORCID

Abstract

Climate change is producing threats to forests’ capacity of regulating water regimes. Therefore, thinning strategies can be applied to mitigate climate change impacts more efficiently by providing more spaces for trees to utilize resources e.g., water and nutrients. This study examined the effects of different thinning intensities and intervals on water characteristics and biomass growth of a 75-year-old Norway spruce (Picea abies) stand in the Black Forest, Germany. Here we used a water and management sensitive update of the process-based forest growth model 3PG, 3PG-Hydro. We applied light (10%), moderate (30%), and heavy thinning (50% intensity) in the interval of 10, 25, and 50 years of the management period. We simulated growth with climate change scenario RCP 8.5 data from 1995 to 2065. We analyzed the effects of the different thinning regimens on biomass, evapotranspiration as well as water yield. Thinning intensity and interval as well as their interaction have significant influence on production of stand biomass and water yield for all thinning regimes applied (p < 0.05). However, there is no significant difference (p > 0.05) in accumulated biomass (thinned biomass added to the stand biomass) between the applied thinning regimes. Light thinning in a long interval (50 years) produced highest stand biomass among the applied thinning regimes. Furthermore, the prediction showed that accumulated water yield increased with increasing thinning intensity. Our study concludes that repeated moderate thinning at intermediate intervals results in a high water yield without losing biomass production.

Funder

European Commission

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference64 articles.

1. Forests and Water Valuation and Payments for Forest Ecosystem Services,2018

2. Trees, forests and water: Cool insights for a hot world

3. Water, Climate Change, and Forests Watershed Stewardship for A Changing Climate ConTents;Furniss,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3