Author:
Wei Wei,Li Qiang,Xu Fangchao,Zhang Xiaoyou,Jin Junjie,Jin Jiaqi,Sun Feng
Abstract
This paper proposes an electromagnetic actuator that concurrently realizes two working functions of vibration suppression and energy regeneration. The actuator consists of four permanent magnetic rings, three soft iron rings, three coils, and three springs. The design of the electromagnetic actuator is based on finite element method (FEM) analysis, and the prototype is based on this analysis. Based on the prototype, the characteristics of the electromagnetic actuator, which has an output force–current coefficient of 39.49 N/A, are explored. A control algorithm with a position controller and an acceleration controller are applied to the actuator. When an impulse excitation is input to the electromagnetic actuator, the acceleration of the controlled object decreases from 114.26 m/s2 to 3.14 m/s2 here. Moreover, when the sinusoidal excitation with a 3 mm amplitude and 5 Hz frequency is input to the electromagnetic actuator, the vibration amplitude of the controlled object is 0.045 mm, suppressed within 1.46% when compared with the input signal. The peak value of the regenerated electromotive force is 1.97 V here, and the actuator efficiency for regenerating energy is 11.59%. The experimental results with multiple frequencies and amplitudes also show that the amplitude of the controlled object can be suppressed within 5.5%, and that the ratio of the electromotive force (EMF) to the input amplitude is 0.13. The results indicate that this electromagnetic actuator can suppress vibrations effectively and regenerate energy from vibrations.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献