A New Non-Invasive Air-Based Actuator for Characterizing and Testing MEMS Devices

Author:

Panahi Abbas,Hossein Sabour Mohammad,Ghafar-Zadeh Ebrahim

Abstract

This research explores a new ATE (Automatic Testing Equipment) method for Micro Electro Mechanical Systems (MEMS) devices. In this method, microscale aerodynamic drag force is generated on a movable part of a MEMS sensor from a micronozzle hole located a specific distance above the chip that will result in a measurable change in output. This approach has the potential to be generalized for the characterization of every MEMS device in mass production lines to test the functionality of devices rapidly and characterize important mechanical properties. The most important testing properties include the simultaneous application of controllable and non-invasive manipulative force, a single handler for multi-sensor, and non-contact characterization, which are relatively difficult to find with other contemporary approaches. Here we propose a custom-made sensing platform consisting of a microcantilever array interconnected to a data acquisition device to read the capacitive effects of each cantilever’s deflection caused by air drag force. This platform allows us to empirically prove the functionality and applicability of the proposed characterization method using airflow force stimuli. The results, stimulatingly, exhibited that air force from a hole of 5 µm radii located 25 µm above a 200 × 200 µm2 surface could be focused on a circular spot with radii of approximately 5 µm with surface sweep accuracy of <8 µm. This micro-size airflow jet can be specifically designed to apply airflow force on the MEMS movable component surface. Furthermore, it was shown that the generated air force range could be controlled from 20 nN to 60 nN, approximately, with a linear dependency on airflow ranging from 5 m/s to 20 m/s, which is from a 5 µm radius microhole air jet placed 400 µm above the chip. In this case-study chip, for a microcantilever with a length of 400 µm, the capacitance curve increased linearly from 28.2 pF to 30.5 pF with airflow variation from 5 m/s to 21 m/s from a hole. The resultant curve is representative of a standard curve for testing of the further similar die. Based on these results, this paper paves the way towards the development of a new non-contact, non-invasive, easy-to-operate, reliable, and relatively cheap air-based method for characterizing and testing MEMS sensors.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3