Effects of Biochar on Drought Tolerance of Pinus banksiana Seedlings

Author:

Reuling Laura F.1ORCID,Toczydlowski Alan J. Z.1,Slesak Robert A.2ORCID,Windmuller-Campione Marcella A.1ORCID

Affiliation:

1. Department of Forest Resources, University of Minnesota, Saint Paul, MN 55108, USA

2. USDA Pacific Northwest Research Station, US Forest Service, Olympia, WA 98512, USA

Abstract

Drought is a major stressor of tree seedlings regarding both natural and artificial regeneration, especially in excessively drained, sandy outwash soils. While climate change is expected to cause an increase in the total annual precipitation in the Upper Midwest, USA, the timing of the precipitation is predicted to result in longer periods of drought during the growing season. Biochar, a material created through the pyrolysis of organic matter, such as wood waste, has been proposed as a soil amendment that may increase the water holding capacity of a soil. Biochar has mostly been studied in agricultural settings, and less is known about the impact of biochar on forest soils and tree seedlings. We used a greenhouse experiment to test the ability of biochar to improve the drought tolerance of jack pine (Pinus banksiana) seedlings via increased soil water holding capacity. The seedlings were planted in sandy soil treated with three levels of biochar (none, 3% by weight, and 6% by weight) in two experiments, one manipulating the timing of drought onset and the other controlling the amount of water that seedlings received. Our results showed no significant effects of biochar on seedling survival, growth, or physiology under drought conditions. While this outcome did not support the hypothesis that biochar would increase seedling performance, the biochar amendments did not negatively affect seedlings, indicating that biochar may be added to soil for carbon storage without having negative short-term impacts on tree seedlings.

Funder

National Institute of Food and Agriculture

Minnesota Agricultural Experiment Station

Publisher

MDPI AG

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3