Author:
Xiao Shuo,Wang Shengzhi,Zhuang Jiayu,Wang Tianyu,Liu Jiajia
Abstract
Today, vehicles are increasingly being connected to the Internet of Things, which enables them to obtain high-quality services. However, the numerous vehicular applications and time-varying network status make it challenging for onboard terminals to achieve efficient computing. Therefore, based on a three-stage model of local-edge clouds and reinforcement learning, we propose a task offloading algorithm for the Internet of Vehicles (IoV). First, we establish communication methods between vehicles and their cost functions. In addition, according to the real-time state of vehicles, we analyze their computing requirements and the price function. Finally, we propose an experience-driven offloading strategy based on multi-agent reinforcement learning. The simulation results show that the algorithm increases the probability of success for the task and achieves a balance between the task vehicle delay, expenditure, task vehicle utility and service vehicle utility under various constraints.
Funder
National Natural Science Foundation of China
Chinese Academy of Agricultural Sciences
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献