The Influence of Marine Traffic on Particulate Matter (PM) Levels in the Region of Danish Straits, North and Baltic Seas

Author:

Firląg SzymonORCID,Rogulski Mariusz,Badyda Artur

Abstract

The aim of the study was to determine air pollution over the sea surface (North Sea and Baltic Sea) compared to the situation in ports, as well as to examine the impact of ships on the level of particulate matter (PM) concentration. The measurements, made during the two-week cruise of the tall ship Fryderyk Chopin, demonstrated that the principal source of PM emission over the sea surface are passing ships equipped with internal combustion engines, including quite numerous units powered by marine oil. The highest pollution levels were observed in locations distant from the coast, with increasing concentrations when other ships were approaching. During the cruise, at least two places were identified with increased PM concentration (18–28 μg/m3 for PM10 and 15–25 μg/m3 for PM2.5) caused by passing ships. The share of PM2.5 fraction in the general PM concentration in these places increased from 70–72% to 82–85%, which means that combustion emission dominated. In turn, measurements made in ports (Copenhagen and Kołobrzeg) showed lower levels of air pollution and indicated a typical variability of the PM concentrations characteristic for land areas. The results confirm the need for determining suitable solutions for sustainable sea transport.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference37 articles.

1. Air Quality Standardshttp://ec.europa.eu/environment/air/quality/standards.htm

2. Air Quality in Europe—2014 Report,2014

3. The Prevalence of Selected Respiratory Diseases and the Exposure to PM10 in the Ambient Air;Majewski;AST J.,2016

4. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

5. Health Risks of Air Pollution in Europe—HRAPIE Project: Recommendations for Concentration—Response Functions for Cost-benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3