Novel Extruded Starch-Beet Pulp Composites for Packaging Foams

Author:

Abbès BoussadORCID,Lacoste Catherine,Bliard Christophe,Maalouf ChadiORCID,Simescu-Lazar Florica,Bogard Fabien,Polidori Guillaume

Abstract

This article concerns the elaboration and the characterization of a novel biobased potato starch-beet pulp composite for packaging applications as cushion foams. A twin-screw extruder was used to elaborate composite foams. SEM observations of these materials were conducted, and thermomechanical properties were studied in terms of thermal transitions (TGA, DSC) and viscoelastic properties (DMA). The effect of relative humidity content on viscoelastic properties was analyzed as a function of frequency. The different test results show that the composite structures are homogeneously mixed. The sponge-like structure of the beet-pulp disappears indicating a good compatibility between the two mixed constituents. The DSC curve of starch-beet pulp foam shows a single thermal transition at 153.6 °C, indicating the thermal homogeneity of the obtained composite material. The density value of starch-beet pulp foam is higher than conventional foams, but this can be optimized by adjusting the technological parameters of the extruder. The viscoelastic properties of the developed materials depend on the relative humidity.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Bioplastics: From Hot to Cold http://bestinpackaging.com/2010/09/12/bio-plastics-from-hot-to-cold/

2. Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch

3. Biodegradation of polymers in historical perspective versus modern polymer chemistry;Albertson,2000

4. Green composites: A review of material attributes and complementary applications

5. Green composites: A brief review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3