Effect of Cr on the Mineral Structure and Composition of Cement Clinker and Its Solidification Behavior

Author:

Fan Haihong,Lv Mengqi,Wang Xiaosha,Xiao Jianmin,Mi Xiaofan,Jia Luwei

Abstract

In order to reveal the solidification behavior of Cr in the cement clinker mineral phase, 29Si magic-angle spinning nuclear magnetic resonance, X-ray diffraction, and scanning electron microscopy with energy-dispersive X-ray spectroscopy techniques were used to analyze the morphology and composition of the cement clinker mineral phase doped with Cr. The results showed that the addition of Cr did not change the chemical environment of 29Si in the clinker mineral phase, and it was still an isolated silicon–oxygen tetrahedron. Cr affected the orientation of the silicon–oxygen tetrahedron and the coordination number of calcium, leading to the formation of defects in the crystal structure of the clinker mineral phase, by replacing Ca2+ into the mineral phase lattice to form a new mineral phase Ca3Cr2(SiO4)3. Cr acted as a stabilizer for the formation of β-C2S in the clinker calcination. As the amount of Cr increased, the relative content of C3S decreased and the relative content of C2S increased. Further, Cr easily dissolved in C2S, while it was not found in C3S. This study is conducive to further research on the mechanism of heavy metal solidification in cement clinker. Furthermore, it is important to evaluate the environmental risk of heavy metals in the process of sludge disposal through cement kiln and promote the utilization of sludge resources and the sustainable development of the cement industry.

Publisher

MDPI AG

Subject

General Materials Science

Reference27 articles.

1. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies

2. Life cycle assessment of energy from solid waste—part 1: general methodology and results

3. Technical Analysis of Cooperative Disposal of Municipal Solid Waste by New Dry-process Cement Kiln;Yang;Chem. Eng. Equip.,2012

4. Effect of CdO on the formation of tricalcium silicate and its solid solution effect;Wang;J. Mater. Sci. Eng.,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3