Improving Dispersion of Recycled Discontinuous Carbon Fibres to Increase Fibre Throughput in the HiPerDiF Process

Author:

Pozegic Thomas R.,Huntley Samantha,Longana Marco L.ORCID,He Suihua,Bandara R. M. Indrachapa,King Simon G.ORCID,Hamerton IanORCID

Abstract

In order to increase the material throughput of aligned discontinuous fibre composites using technologies such as HiPerDiF, stability of the carbon fibres in an aqueous solution needs to be achieved. Subsequently, a range of surfactants, typically employed to disperse carbon-based materials, have been assessed to determine the most appropriate for use in this regard. The optimum stability of the discontinuous fibres was observed when using the anionic surfactant, sodium dodecylbenzene sulphonate, which was superior to a range of other non-ionic and anionic surfactants, and single-fibre fragmentation demonstrated that the employment of sodium dodecylbenzene sulphonate did not affect the interfacial adhesion between fibres. Rheometry was used to complement the study, to understand the potential mechanisms of the improved stability of discontinuous fibres in aqueous suspension, and it led to the understanding that the increased viscosity was a significant factor. For the shear rates employed, fibre deformation was neither expected nor observed.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3