Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts

Author:

Aguado-Deblas LauraORCID,Estevez Rafael,Russo Marco,La Parola ValeriaORCID,Bautista Felipa M.ORCID,Testa Maria LuisaORCID

Abstract

Glycerol is the main by-product of biodiesel production. For this reason, its valorization into value-added products, by using green procedures, represents an important goal. Different sulfonic acid silica- or titania-based catalysts were prepared, characterized and tested in the glycerol etherification process, assisted by microwaves, in order to obtain biodiesel additives. The surface and structural properties of the catalysts were investigated by means of N2 adsorption isotherms, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and acid capacity measurements by X-Ray Fluorescence Spectroscopy (XRF). The best performance in terms of activity was achieved in the presence of the sulfonic function directly linked to the amorphous silica. By the correlation of the structure properties of the materials and their activity, the performance of the catalysts was shown to be influenced mainly by the surface area, pore volume and acidity. Recycling experiments performed over the most active systems showed that the sulfonic silica-based materials maintained their performance during several cycles.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3