Application of Ozone Treatment for the Decolorization of the Reactive-Dyed Fabrics in a Pilot-Scale Process—Optimization through Response Surface Methodology

Author:

Powar Ajinkya SudhirORCID,Perwuelz Anne,Behary Nemeshwaree,Hoang Levinh,Aussenac Thierry

Abstract

The decolorization of a cotton fabric dyed with a reactive dye (C.I. Reactive Black 5) was studied using an optimized ozone-assisted process at pilot scale. Box–Behnken design was used to evaluate the effects of three parameters on the decolorization of the dyed textile, namely, pH of the treatment (3–7), ozone concentration (5–85 g/m3 of ozone), and treatment time (10–50 min). The fitted mathematical model allowed us to plot response surfaces as well as isoresponse curves and to determine optimal decolorization conditions. In this study, we have proposed a pilot-scale machine which utilizes ozone for the color stripping of the dyed cotton. This pilot-scale application opens up the route for application of ozone at an industrial scale for achieving sustainability in the textile industry.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3