Abstract
This paper describes the design of a single-phase high-speed flux reversal motor (FRM) for use in a domestic application (vacuum cleaner). This machine has a simple and reliable rotor structure, which is a significant advantage for high-speed applications. An FRM design in which the inner stator surface is entirely used allows it to decrease its volume and increase its efficiency. The mathematical modeling, based on the finite element method, and the optimal design of the high-speed single-phase FRM are described. The criterion of optimization and the selection of a proper optimization algorithm are discussed. Since the finite element method introduces a small but quasi-random error due to round-off accumulation and choosing the mesh, etc., the Nelder-Mead method, not requiring the derivatives calculation, was chosen for the optimization. The target parameter of the optimization is built for the motor efficiency when operating at different loads. Calculations show that the presented approach provides increasing motor efficiency during the optimization, particularly at underload.
Funder
Ministry of Education and Science of the Russian Federation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献