Design of ANFIS for Hydrophobicity Classification of Polymeric Insulators with Two-Stage Feature Reduction Technique and Its Field Deployment

Author:

Jayabal RajamohanORCID,Vijayarekha K.,Rakesh Kumar S.ORCID

Abstract

Hydrophobicity of polymeric insulator plays a vital role in determining the insulation quality in outdoor overhead electrical transmission and distribution lines. Loss of hydrophobicity increases the leakage current and leads to flashover. Monitoring hydrophobicity becomes a fundamental requirement to ensure continuity of power line operations. Hydrophobicity of polymeric insulator is classified according to STRI (Swedish Transmission Research Institute) guidelines. This paper proposes an intelligent ANFIS (Adaptive Neuro-Fuzzy Inference System) based classifier to determine the hydrophobicity quality using the digital image of the insulator. Ten statistical features are extracted from the digital images. Two stages of feature reduction are employed to reduce the number of features. Pre-design stage uses PCA (Principal Component Analysis) and reduces the number of features to six from ten and the post-design stage analyzes the accumulation effect to reduce the number of features to four. Various ANFIS classifiers are trained using these reduced features extracted from the image. The performance of these ANFIS classifiers is evaluated in both field and laboratory specimens. Results indicate classification accuracy of 96.4% and 93.3% during the training and testing phase when triangular membership function with linear output function is employed in ANFIS. A GUI (Graphical User Interface) has also been designed to facilitate the use of the proposed system by field operators.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3