Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods

Author:

Wang Yugang,Huang Xiang,Li Li

Abstract

This paper presents a comparative study of the cross-flow regenerative heat and mass exchanger (HMX) and the conventional cross-flow HMX for indirect evaporative cooling (IEC) with numerical methods. The objective of this study is mainly to clarify the applicability of the two HMXs. The numerical model was built and validated by existing experimental data. The difference in heat and mass transfer between the two HMXs was revealed by analyzing the change of the temperature and moisture content of the air, and the influence of the main operating parameters on the cooling performance of the HMXs was analyzed. In the typical operating conditions, when the HMXs are used alone, the cooling performance of the regenerative HMX is better than that of the conventional HMX under low supply air flow rate. When the HMXs are used in the multistage evaporative cooling systems with high supply air flow rate, the conventional HMX is more suitable as the first stage of the system to pre-cool the supply air, while the regenerative HMX is more suitable as the second stage to re-cool the supply air.

Funder

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3