The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft

Author:

Somuncu Tugba,Hannum ChristopherORCID

Abstract

Introduction: Estimating the effectiveness of energy efficiency policy in reducing energy use requires a full understanding of the energy efficiency rebound effect, where energy use reductions differ from engineering expectations. Prior models that estimate the size of the total rebound effect ignore energy theft, which is a common feature in developing economies. Objectives: The primary objective of this study was to evaluate the role that energy theft plays in determination of the size of the rebound effect of energy efficiency policy in developing countries, using the Turkish economy and the specific Turkish regulation regarding compensation for energy theft as an example. Methods: We construct two energy-economy computable general equilibrium (CGE) models for Turkey that do and do not incorporate energy theft. Costs of energy theft are passed on to consumers through a recovery surcharge. Two energy efficiency policies are modeled; one leading to a 42% energy efficiency increment for the service sector and another leading to a 48% energy efficiency increment for households. Results: Without energy theft, rebound effects for both policies are small: between −1.4% and 3.1% for the service sector and between 0.4% and 2.1% for households. With energy theft, we see a −7.9% to −19.7% rebound for the service sector and a 10.4% to 40.7% rebound for households. The recovery surcharge on energy sales rises when energy efficiency gains affect the service sector but fall when they affect households. Conclusions: The interaction between energy efficiency and energy theft may be critical in accurate estimation of rebound effects where energy theft is prevalent. Where energy efficiency gains disproportionately reduce electricity sales rather than theft, the rising recovery surcharge leads to a negative rebound or super-conservation. However, where theft is disproportionately reduced rebound will be higher.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference62 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3