Abstract
Given the complementary nature of photovoltaic (PV) generation and energy storage, the combination of a solar panel and a battery pack in one single device is proposed. To realize this concept, the PV Battery-Integrated Module (PBIM), it is fundamental to analyze the system architecture and energy management. This paper focuses on selecting a suitable architecture among the different options, while also indicating the control strategy that the converters must follow to ensure appropriate performance. Also, several modes of operation for the complete system are introduced to implement energy management. For the selected DC architecture, two case studies, viz. off-grid and peak-shaving for a grid-tied system, were employed to characterize the response of the model demonstrating its utility to perform maximum power-point tracking, excess solar power curtailment, and battery charging and discharging. The proposed control and system architecture prove to be feasible for a PV battery-integrated device such as PBIM.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference32 articles.
1. Renewable energy: a response to climate change
2. Solar energy: Potential and future prospects
3. Ren21: Renewables 2018 Global Status Report
http://www.ren21.net/wpcontent/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf
4. Recent Facts about Photovoltaics in Germany;Wirth;Fraunhofer ISE,2015
5. Key challenges to expanding renewable energy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献