Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels

Author:

Li Xiuzhen1,Liu Qiang2,Ma Yanying1,Wu Guanghua2,Yang Zhou2,Fu Qiang2

Affiliation:

1. School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China

2. School of Mechanical and Vehicular Engineering, Jilin Engineering Normal University, Changchun 130052, China

Abstract

Aiming to achieve the goal of efficient and clean combustion in internal combustion engines, simulations are used to change the physicochemical properties and molecular configuration of fuels by adding oxygenated fuels such as alcohols, esters, ethers, etc., so as to achieve the purpose of improving combustion and reducing emissions. In this paper, blends of oxygenated fuels, including n-butanol, DME, DMC, and diesel fuel with different oxygen-containing functional groups, were selected for simulation to reveal the chemical mechanisms of fuel oxygen on combustion and pollutant generation in the combustion system and to deeply explore the mechanism and influence law of the different forms of oxygen bonding on the generation and oxidation of carbon smoke. At the same fuel oxygen content, the differences in the fuel physicochemical properties and reaction paths resulted in different effects of the different oxygenated fuels on the in-cylinder oxidative activity and different inhibition abilities of carbon smoke precursors. Compared with pure diesel, n-butanol, and DME, which promoted OH generation, DMC inhibited OH generation, so the oxidation activity of diesel/n-butanol was the highest, and that of diesel/DMC was the lowest; meanwhile, the two O atoms in the DMC molecule formed CO2 with one C atom, which reduced the utilization efficiency of the O atoms, whereas each O atom in the n-butanol and DME fuels took away one C atom, so the utilization efficiency of O atoms was higher. The individual oxygenated fuels themselves had different abilities to contribute to carbon smoke precursors, and the above combined factors led to reductions of 8.7%, 32.6%, and 85.4% in soot emissions from the addition of DMC, DME, and n-butanol compared to pure diesel fuel, respectively, at the same oxygen content. At a medium load, the addition of n-butanol, DME, and DMC reduced NOx emissions by 0.5%, 1.7%, and 3.3%, respectively. Thus, it is shown that DMC has a more significant effect on NOx emission reduction.

Funder

Jilin Provincial Education Department Project

Doctoral project of Jilin Engineering Normal University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3