Effects of Clipping Intensity on the Physiology of Dicranopteris pedata and Its Interroot Soil in the Rare-Earth-Mining Area in Southern China

Author:

Lin Yu1,Chen Zhiqiang1,Li Weiye1,Chen Zhibiao1

Affiliation:

1. School of Geography, Fujian Normal University, Fuzhou 350007, China

Abstract

Clipping is crucial during phytoremediation. However, research into the effects of clipping intensity on the physiology of Dicranopteris pedata (D. pedata) and its interroot soil in the rare-earth-mining area in southern China is lacking. A clipping experiment was conducted to verify the phytoremediation effect of D. pedata. The physiology of D. pedata, such as biomass, antioxidant enzymes, chlorophyll, and rare-earth elements (REEs), were determined after clipping. And the microbial community diversity and soil enzyme activities in the interroot soil of D. pedata were investigated. The phytoremediation efficiency was determined at the end of the experiment. The results showed that the compensatory growth effect of D. pedata was stronger with increasing clipping intensity. There was no significant difference in the α diversity of interroot soil microorganisms of D. pedata at different clipping intensities, but β diversity analysis showed that the clipping treatment group deviated from the control group. Only urease activity decreased among the interroot soil enzymes in D. pedata after clipping, while the soil catalase and sucrase were less responsive to clipping. The REEs accumulated by D. pedata were dominated by light REEs in the aboveground part of the plant, while the amounts of light and heavy rare-earth elements accumulated in the underground part of the plant were similar. The phytoextraction of REEs gradually increased with increasing clipping intensity. It was concluded that 100% clipping once a year is the most appropriate when considering D. pedata’s phytoremediation potential and soil system. The time it takes for 100% clipping of D. pedata to reduce the soil TREEs (total rare-earth elements), LREEs (light rare-earth elements), and HREEs (heavy rare-earth elements) to below-average soil REE concentration in China was estimated to be 25.54 years, 19.56 years, and 65.43 years, respectively, which was significantly lower than that for other clipping intensities and the control group. It is concluded that clipping D. pedata is an effective way to promote phytoextraction efficiency in the southern rare-earth-mining areas. The soil can still support the resumption of D. pedata growth after high-intensity clipping.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3