Abstract
Continuous runoff needs to be estimated in ungauged catchments to interpret hydrological phenomena and manage water resources. Researchers have used various methods to estimate runoff in ungauged catchments, but few combined different methods to improve the estimation. A model parameter-based method named the parameter transfer (PT) method and a flow-based method of area ratio (AR) were combined and tested in eight catchments in a lake basin. The performance of the PT method depended on the model simulation and donors, which were related to physical and climate characteristics of the catchments. Two AR methods were compared and the results showed that the standard AR method was suitable in this study area with the area ratio between donor and target ranging from 0.46 to 1.41. ENS and R2 values suggested that the PT method used in this study showed a better result than the AR method in 75% of the considered sites, but the total runoff deviation was lower for the standard AR method than that for the PT method. We used the standard AR method weighted by the PT method, and compared three versions weighted with daily, monthly, and average ENS values of the PT and AR methods and one unweighted version. The results of the combined methods were promising. The version weighted with daily ENS performed best and gave improved R2 and daily ENS values for 75% of the receivers. The unweighted combined method performed stable in all sites. The combined method gave better simulation of daily and monthly continuous runoff in ungauged catchments than each individual method.
Funder
National Natural Science Foundation of China
Chinese National Special Science and Technology Program of Water Pollution Control and Treatment
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献