Post-Drive Standing Balance of Vehicle Passengers Using Wearable Sensors: The Effect of On-Road Driving and Task Performance

Author:

Le Victor C.ORCID,Jones Monica L. H.ORCID,Sienko Kathleen H.ORCID

Abstract

Postural sway has been demonstrated to increase following exposure to different types of motion. However, limited prior studies have investigated the relationship between exposure to normative on-road driving conditions and standing balance following the exposure. The purpose of this on-road study was to quantify the effect of vehicle motion and task performance on passengers’ post-drive standing balance performance. In this study, trunk-based kinematic data were captured while participants performed a series of balance exercises before and after an on-road driving session in real-time traffic. Postural sway for all balance exercises increased following the driving session. Performing a series of ecologically relevant visual-based tasks led to increases in most post-drive balance metrics such as sway position and velocity. However, the post-drive changes following the driving session with a task were not significantly different compared to changes observed following the driving session without a task. The post-drive standing balance performance changes observed in this study may increase vulnerable users’ risk of falling. Wearable sensors offer an opportunity to monitor postural sway following in-vehicle exposures.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3