Customizable Stochastic High-Fidelity Model of the Sensors and Camera Onboard a Fixed Wing Autonomous Aircraft

Author:

Gallo EduardoORCID,Barrientos AntonioORCID

Abstract

The navigation systems of autonomous aircraft rely on the readings provided by a suite of onboard sensors to estimate the aircraft state. In the case of fixed wing vehicles, the sensor suite is usually composed by triads of accelerometers, gyroscopes, and magnetometers, a Global Navigation Satellite System (GNSS) receiver, and an air data system (Pitot tube, air vanes, thermometer, and barometer), and it is often complemented by one or more digital cameras. An accurate representation of the behavior and error sources of each of these sensors, together with the images generated by the cameras, is indispensable for the design, development, and testing of inertial, visual, or visual–inertial navigation algorithms. This article presents realistic and customizable models for each of these sensors; a ready-to-use C++ implementation is released as open-source code so non-experts in the field can easily generate realistic results. The pseudo-random models provide a time-stamped series of the errors generated by each sensor based on performance values and operating frequencies obtainable from the sensor’s data sheets. If in addition, the simulated true pose (position plus attitude) of the aircraft is provided, the camera model generates realistic images of the Earth’s surface that resemble those taken with a real camera from the same pose.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference59 articles.

1. Aided Navigation, GPS with High Rate Sensors;Farrell,2008

2. Dynamics of Atmospheric Flight;Etkin,1972

3. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems;Groves,2008

4. IMU Error Modeling for State Estimation and Sensor Calibration: A Tutorial;Farrell;IEEE Control. Syst. Mag.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3