Assessing the Performance of CO2-Mineralized Underground Backfilling Materials through the Variation Characteristics of Infrared Radiation Temperature Index

Author:

Cao Guanghui1,Ma Liqiang1234ORCID,Osemudiamhen Arienkhe Endurance1,Ngo Ichhuy1,Gao Qiangqiang1ORCID,Yu Kunpeng1,Guo Zezhou1ORCID

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. Key Laboratory of Xinjiang Coal Resources Green Mining, Xinjiang Institute of Engineering, Ministry of Education, Urumqi 830023, China

3. Xinjiang Key Laboratory of Coal-Bearing Resources Exploration and Exploitation, Xinjiang Institute of Engineering, Urumqi 830023, China

4. Xinjiang Engineering Research Center of Green Intelligent Coal Mining, Xinjiang Institute of Engineering, Urumqi 830023, China

Abstract

The utilization of CO2 mineralization fly ash (F) and coal gangue (G) technology is proposed in this research work to prepare underground backfilling materials. The test process can be divided into pre-treatment and post-treatment stages. In the pre-treatment stage, a sealed stirring vessel is used to conduct CO2 wet mineralization. The ratios of F and G were selected as follows: 20%:60% (F2G6), 30%:50% (F3G5), 40%:40% (F4G4), 50%:30% (F5G3), and 60%:20% (F6G2). The ratios were prepared into Φ50 mm × 100 mm cylindrical samples, with curing durations of 3 d, 7 d, 14 d, and 28 d. In the post-processing stage, the SANS microcomputer-controlled electronic universal testing machine and FLIR A615 infrared thermal imager were used to carry out uniaxial loading and temperature detection, respectively. The unconfined compressive strength (UCS), X-ray diffraction (XRD), average infrared radiation temperature (AIRT), variance of original infrared image temperature (VOIIT), and variance of successive minus infrared image temperature (VSMIT) of the samples were compared and analyzed. The results indicated that when curing reaches 14 d, the strength approaches its peak, with minimal changes in strength over a delayed period; furthermore, as the ratio of F to G continues to increase, the mineralization effect gradually strengthens, reaching its optimum level at a ratio of 5:3. However, when the ratio exceeds 5:3, signs of deteriorating mineralization effect start to appear. During the loading process, the AIRT of the mineralized samples showed a continuous increase, but the VOIIT and VSMIT of the mineralized sample both exhibited significant fluctuations or rapid increases during damage rupture. Moreover, the rise in the AIRT value was found to be linked to the increase in the ratio of F to G. This indicates that F has a higher thermal–mechanical conversion efficiency compared to G, so the temperature change will be greater during the loading process. The drastic changes in the VOIIT and VSMIT indicate that they can be used as sensitive response indicators for sample rupture, and can predict and warn of damage rupture in mineralized samples. Research work can provide practical guidance and reference for underground backfilling of CO2 mineralization industrial waste.

Funder

Liqiang Ma

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3