Petrogenesis and Geodynamic Evolution of A-Type Granite Bearing Rare Metals Mineralization in Egypt: Insights from Geochemistry and Mineral Chemistry

Author:

Ghoneim Mohamed M.1ORCID,Abdel Gawad Ahmed E.1ORCID,El-Dokouny Hanaa A.2,Dawoud Maher2,Panova Elena G.3ORCID,El-Lithy Mai A.2ORCID,Mahmoud Abdelhalim S.4

Affiliation:

1. Nuclear Materials Authority, El-Maadi, Cairo P.O. Box 530, Egypt

2. Geology Department, Faculty of Science, Menofia University, Shebin El Koum 32511, Egypt

3. Department of Geochemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia

4. Department of Geology, Fayoum University, Al-Fayoum 63514, Egypt

Abstract

During the Late Precambrian, the North Eastern Desert of Egypt underwent significant crustal evolution in a tectonic environment characterized by strong extension. The Neoproterozoic alkali feldspar granite found in the Homret El Gergab area is a part of the Arabian Nubian Shield and hosts significant rare metal mineralization, including thorite, uranothorite, columbite, zircon, monazite, and xenotime, as well as pyrite, rutile, and ilmenite. The geochemical characteristics of the investigated granite reveal highly fractionated peraluminous, calc–alkaline affinity, A-type granite, and post-collision geochemical signatures, which are emplaced under an extensional regime of within-plate environments. It has elevated concentrations of Rb, Zr, Ba, Y, Nb, Th, and U. The zircon saturation temperature ranges from 753 °C to 766 °C. The formation of alkali feldspar rare metal granite was affected by extreme fractionation and fluid interactions at shallow crustal levels. The continental crust underwent extension, causing the mantle and crust to rise, stretch, and become thinner. This process allows basaltic magma from the mantle to be injected into the continental crust. Heat and volatiles were transferred from these basaltic bodies to the lower continental crust. This process enriched and partially melted the materials in the lower crust. The intrusion of basaltic magma from the mantle into the lower crust led to the formation of A-type granite.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3