Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma

Author:

Rich BenjaminORCID,Huang Jianfeng,Yang Yidong,Jin William,Johnson Perry,Wang Lora,Yang Fei

Abstract

(1) Background and purpose: clinical trials have unsuccessfully tried to de-escalate treatment in locally advanced human papillomavirus positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) with the goal of reducing treatment toxicity. The aim of this study was to explore the role of radiomics for risk stratification in this patient population to guide treatment. (2) Methods: the study population consisted of 225 patients with locally advanced HPV+ OPSCC treated with curative-intent radiation or chemoradiation therapy. Appearance of distant metastasis was used as the endpoint event. Radiomics data were extracted from the gross tumor volumes (GTVs) identified on the planning CT, with gray level being discretized using three different bin widths (8, 16, and 32). The data extracted for the groups with and without distant metastasis were subsequently balanced using three different algorithms including synthetic minority over-sampling technique (SMOTE), adaptive synthetic sampling (ADASYN), and borderline SMOTE. From these different combinations, a total of nine radiomics datasets were derived. Top features that minimized redundancy while maximizing relevance to the endpoint were selected individually and collectively for the nine radiomics datasets to build support vector machine (SVM) based predictive classifiers. Performance of the developed classifiers was evaluated by receiver operating characteristic (ROC) curve analysis. (3) Results: of the 225 locally advanced HPV+ OPSCC patients being studied, 9.3% had developed distant metastases at last follow-up. SVM classifiers built for the nine radiomics dataset using either their own respective top features or the top consensus ones were all able to differentiate the two cohorts at a level of excellence or beyond, with ROC area under curve (AUC) ranging from 0.84 to 0.95 (median = 0.90). ROC comparisons further revealed that the majority of the built classifiers did not distinguish the two cohorts significantly better than each other. (4) Conclusions: radiomics demonstrated discriminative ability in distinguishing patients with locally advanced HPV+ OPSCC who went on to develop distant metastasis after completion of definitive chemoradiation or radiation alone and may serve to risk stratify this patient population with the purpose of guiding the appropriate therapy.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3